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Abstract

The automated alignment system, described herein, employs a reflective, passive ( requiring no

power ) target and includes a PC-based imaging system and one camera mounted on a six degree of

freedom robot manipulator. The system detects and corrects for manipulator misalignment in three

translational and three rotational directions by employing the Targeting and Reflective Alignment

Concept (TRAC) [11], which simplifies alignment by decoupling translational and rotational

alignment control. The concept uses information on the camera and the target's relative position

based on video feedback from the camera. These relative positions are converted into alignment

errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue

of a subtraction algorithm which enables the camera to only see the target. These capabilities are

realized with relatively minimal complexity and expense.

Introduction

Alignment is a common engineering problem. In general, it requires that two objects be placed

at a specific pose with respect to one another. Pose is a description of alignment that can include all

six degrees of freedom (translational x, y, z; and orientation roll, pitch and yaw). The roots of

alignment are in the land surveyor's geodetic transit of the 19th century [13]. Techniques from 100

years ago may seem crude when compared with the high speed signal processing and exotic sensors

available now, but the concepts, however, remain quite similar. In the past, the sensor was the

human eye and the image processor was the human brain. By the early and middle 20th century,

human optics were used for off-line manufacturing inspection and gaging. The tools of the trade

included optical fiats, microscopes and optical comparators [17]. More recently, the pressures of

higher performance manufacturing gave birth to automated inspection and alignment.

This automation of alignment has many applications including manufacturing, docking of

space vehicles, underwater vehicle manipulations, hazardous environment manipulations and shaft

alignment. Today's methods of alignment employ triangulation sensors, computer vision systems,

laser interferometric techniques, and ultrasonic techniques. These methods are expensive and

require high-tech hardware but save tremendous amounts of time and are much more accurate than

their predecessors.
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Manycurrentalignmentsensing systems use multiple sensors and triangulation techniques.

Triangulation techniques use two or more sensors and knowledge of the sensors' relative positions.

Saint-Marc, Jezouin and Medioni [15] present a triangulation-based range finding system that

employs two cameras that look at a scene illuminated by a sheet of laser light. The automated

alignment method described by Shi, Monchaud, Prat, and Domey[16] includes two cameras and an

infrared emitter on the object to be located. The two cameras locate the position of the target in

their two dimensional image plane. Knowledge of the cameras' positions relative to each other and

the emitter's position in each image allows for determination of the position of the emitter in three

dimensional space. The cameras can then be manipulated to keep the emitter in the center of their

individual images.

Laser interferometric techniques provide

provide less than six-axis alignment capability.

very accurate alignment but are expensive and

The basic principles of laser interferometry are

described by Farnum[5l along with a discussion of its strengths and weaknesses. Ishikawa[8] and

Laguesse[9] describe two of many fiber optic-based range finding sensors. Several shaft alignment

concepts measure two translational and two rotational axes (Ill, [21, [3], [12], [131). Hamar and

Gettelman[61, and Callari [4] describe the use of laser optics for machinery alignment with the laser

as a straight-edge.

The hole sensor described by Stevenson[17] employs an emitting fiber that is focused on a

target surface creating an illuminated spot. A detecting fiber receives the light reflected from the

target. As the illuminated spot sweeps across the hole, the reflected light's intensity decreases at the

first edge and increases again when the other edge is encountered. This method provides ample

accuracy but is limited to two-dimensional translational alignment.

Ultrasonic sensors offer one-dimensional position measurement but provide reliability, wide

measurement ranges, and insensitivity to dust, dirt and external lighting [10]. Robinsonll4]

describes an ultrasonic proximity sensor that measures range alignment error at a range of 4 to 256

inches and outputs an analog signal based on the error.

The National Aeronautics and Space Administration / Johnson Space Center (NASAJJSC) has

approached Texas A&M University with the need to automate an alignment concept that they have

developed to position the Space Shuttle's Remote Manipulator System's ( RMS ) end-effector at a



specificalignmentwith respectto anobjectto be grappled (e.g. a disabled satellite). This problem

may be trivial on Earth where a supercomputer can be used to perform pattern matching routines or

other complicated algorithms but this is not realistic on the Space Shuttle. It's on-board computer is

in the process of being upgraded to a system comparable in speed to an 80286-based computer which

will provide limited computer power.

Another consideration is fault tolerance. If the software system fails and the RMS locks in the

unstowed position, the shuttle cannot return to Earth. The astronauts must be able to take manual

control the RMS and accomplish the desired task or maneuver the RMS back into the payload bay.

The previously discussed sensors provide very accurate alignment capabilities but they all require

either too much computer power or are not easily made fault tolerant.

This thesis describes an automated tracking, targeting, and control strategy that uses the

Targeting and Reflective Alignment Concept (TRAC), which is a highly sensitive but simple sensor

for general alignment purposes. Some major components of the proposed strategy are currently

being used by astronauts at the Manipulator Development Facility at NASA/JSC. This sensor

detects and corrects for alignment errors in the three translational and three rotational directions for

relatively little complexity. Because the sensor uses simple video feedback, if the system fails the

astronauts can perform the algorithm without the computer software. Research has been done to

develop TRAC as an automated alignment system, demonstrate its accuracy and precision, and

examine the optical and geometric considerations that are necessary for it's implementation.

Background for the Automation

TRAC employs a camera on a manipulator and a reflective target (mirror) on a "target" object.

The camera is used to provide video feedback of 1) the target and 2) the camera's reflection from the

target. The concept can be demonstrated with a camera and a mirror.

Coordinate System

Before the alignment strategy can be discussed, a TRAC-based coordinate system must be

described. The cartesian coordinate system of Figure 1 will be used, with a traditional definition of

roll, pitch and yaw.
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Figure 1 - Reference Coordinate System

Range is motion along the camera's optical axis, which is the x-axis in Figure 1. Motion in the

y and z direction is referred to as lateral motion. Roll, pitch and yaw are def'med as a rotation about

the x, y and z axes, respectively.

Alignment

With the TRAC concept, alignment occurs when the camera's optical axis is normal to the

reflective target and when the optical axis points to the center of the target. See Figure 2.

VIDEO
CAMERA

_.... CAMERA'S FIELD
OF VIEW ..-- - " "" " IMAGE OF THE

- ' "" " _ PITCH

OPTICAL ALIGNMENT
ERROR

ill,\ AXIS

IMAGE

REFLECTIVE CROSS-HAIRS

TARGET

MONITOR
CROSS-HAIRS

VIDEO
MONITOR

Figure 2 - Demonsu'ation of Pitch/Yaw Misalignment



5

When the camera is normal to the target, the camera image in the video monitor is centered (The

camera "sees" itself). When the optical axis points to the center of the target, markings on the

reflective target, such as cross hairs, are also centered in the video monitor. This is described as

rotational and lateral translational misalignment separately as follows.

Pitch and yaw misalignment occur when the camera's optical axis is not normal to the surface

of the target. Remember that the camera is fixed to the manipulator. Misalignment is sensed when

the camera's image appears off-center in the video monitor as demonstrated in Figure 2. For correct

pitch and yaw alignment, the camera must be rotated about the target until its reflected image is

centered in the monitor. This occurs when the optical axis is normal to the mirror. In Figure 2, the

yaw error is minimal since the camera image in the monitor is nearly centered on the vertical

monitor cross-hairs. To correct the pitch alignment error a positive pitch motion of the camera

(manipulator) must occur.

Lateral misalignment is evident when the target is not centered on the camera's optical axis. It

is sensed when the target fixture's image appears off-center (solid cross hairs) in the video monitor as

demonstrated in Figure 3. The camera is normal to the target but the optical axis is not aligned with

the cross hair center.

REFLECTIVE

t_ CROSS-HAIRS

IMAGE OF THE MONITOR
CROSS-HAIRS

IMAGE OF
CROSS-HAIRS VIDEO

MONITOR

Figure 3 - Demonstration of Lateral Misalignment

LATERAL
ALIGNMENT

ERROR

In Figures 2 and 3 the centroid of the target is represented by the cross-hairs image on the monitor.

The distance from the cross-hairs to the monitor's center represents the translational alignment error.
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Notethattranslationalalignmentdoesnotaffect rotationalalignmentbut theoppositeis not

true. Rotationalalignmentdoesaffecttranslationalalignmentunlesstheaxisof rotationis aboutthe

targetcrosshairscenter. If thecamerarotatesaboutthecrosshairs,theopticalaxiscontinuesto

alignwith thecrosshairscenter. If thecamerarotatesaboutanyotheraxis,therotationwill cause

theopticalaxisto moveawayfrom thecrosshairscenter.Becauseof this, it is easiestto first align

rotationsuchthatthecamerais normalto thetargetandthenaligntranslation. Translationwill not

affectthepreviousrotationalalignment.It is still beneficialto rotateasnearlyaspossibleaboutthe

crosshairscentersothatthecameradoes not "lose" the mirror upon rotation.

Equipment

An Hitachi Model Kp-120U Closed Circuit Television camera with a 19 mm lens is mounted

on the end effector of a Unimate Model 560 PUMA manipulator for the automation of TRAC. The

robot is controlled by a 80386-based computer. Low-level C callable routines have been developed

that interface with the PUMA's teach pendant to perform the necessary motions. "Teach pendant" is

another name for the manual control device for the robot. It allows a user to control the robot's

motion with respect to different coordinate frames by activating button relays. In parallel

communication with the PC is an Imaging Technologies Series 151 imaging system with MicroSoft

C-based software from Mnemonics Inc.

To better understand this report, a description of some basic operations of imaging system is in

order. Image processors digitize analog signals from cameras where the image plane of the camera

is broken into a tiny grid. Each square section of the grid is referred to as a pixei. Each pixel

location is assigned an output voltage based on the intensity of the light that it senses. The imaging

system converts each of these voltages to a gray value between 0 and 255, with 0 representing the

most dark and 255 representing the most light.

A binary threshold operation on an image transforms all pixels with a gray level of greater than

a specified threshold white and all pixels with a gray level less than a specified value black. If the

threshold is set to a high value then the brightest parts of the image will stand out. If the threshold is

set low then the dark portions stand out.

In addition, the software from Mnemonics provides a "blob analysis". The blob analysis

determines the centroid area and location of each "blob" in an image. A blob is defined as the set of
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adjacent pixels that are within a specified range of gray values.

An Overview of the Automation Strategy

A concept for the alignment strategy must be formulated to develop the automation.

design takes into account several observations.

This

l°

,

.

Positioning the camera so that the target is in the camera's field of view is a relatively

simple task for the user to perform. The manipulator is controlled such that the camera's

optical axis points towards the target.

Positioning the camera in such a way that it's own reflection can be seen in the mirror is a

more difficult task for the user but is a prerequisite to implementation of the automation.

The optical axis must be nearly normal to the target mirror.

Because the system is being designed for use on the Space Shuttle, the user is ultimately

in control of the automation, he is "in the loop". The automation will be designed to

retain manual supervision and emergency override capabilities.

The first two observations have been shown to be true by astronauts at the Manipulator

Development Facility (MDF) at JSC when attempting to manually implement TRAC.

Conceptually, a logical outcome of these observations is the development of two alignment strategies

to achieve the final precision alignment. These are referred to as the gross positioning and fine

positioning algorithms. Their relation is shown in Figure 4.

i  ser  ar otOr°s F'ne1,,ligamenttyenti cationyt,PositioningPositioning
Figure 4 - General Flow of the Alignment Algorithm

To perform the automation, a user manually positions the end-effector of the manipulator so

that the camera is within viewing distance and oriented towards the target mirror. The imaging

system recognizes the target (as will be detailed shortly) and the user verifies the identification. The



relative rotational misalignment and the translational misalignment of the target in relation to the end

effector is then determined. The gross positioning algorithm is used to approximately align the

camera normal to the target mirror until the camera can see its own reflection. The fine positioning

algorithm is then used to accurately align an object in order to grapple, contact, or perform insertion

tasks. This two tiered approach is necessary because fine pose control requires the reflection of the

camera to be seen in the camera's field of view. Relatively small misalignment between the camera's

optical axis and the normal target mirror results in the image of the camera being out of its own

view.

To implement the gross positioning algorithm, a method must be developed to obtain

information about the camera's and target's relative positions when large errors occur in the pitch and

yaw positions. This algorithm must perform this task with a high reliability. The fine positioning

algorithm will use the methods of TRAC to determine and correct pitch, yaw and lateral alignment

errors°

Atter the camera is normal to the target and centered on the cross hairs, two additional degrees

of freedom remain, range and roll. Range control is guided by the apparent size of the target. For

manual TRAC this is the perceived size of the cross hair grid. Roll control is guided by a given

coordinate of on the target as "up." For manual control, one axis of the cross hairs is marked to

identify it from the others.

Development of the Sensor

The automation requires that a sensor be developed that employs TRAC for fine positioning

but also allows for the gross positioning to be accomplished. In short, a target must be developed

that reveals information about its position with respect to the camera. The target must have special

characteristics to enable the vision system to easily and quickly recognize it.

A traditional means of target recognition is template matching in which the target has

markings on it that the imaging system is programmed to recognize. Every pixel seen by the vision

system must be checked against a template image when using this method. Obviously, this takes

large amounts of computer time. Because in-flight computers on the Space Shuttle are relatively

slow, template matching does not provide the speed to allow for precision real time control of the



RMS. Consequently, a faster method is needed.

In the initial stages of this research, schemes were developed for target recognition that employ

very reflective or very non-reflective objects to mark the target and a binary threshold of the image

to make the markings more prominent. Thresholding was chosen for testing because it is

computationally inexpensive when compared to other methods currently in use.

In order to recognize the target with dark markings, a fiat black paint (3M's Nextel Velvet

Coating 101-C10 BLACK) was used to form cross-hairs to mark the center of the mirror as shown in

Figure 5.

MOUNT FOR LEDS

MIRROR

IMAGING
SYSTEM

IMAGE OF

LED REFLECTIONS

IMAGE OF

CROSS-HAIRS

Figure 5 - Testing with Black Paint as Cross-Hairs

Four LEDs were placed in an aluminum mount around the edge of the camera's lens. Software was

developed to perform two binary threshold operations on the image. One thresholding facilitates

determination of the centroid of the cross-hairs and the other facilitates determination of the centroid

of the LEDs. A binary threshold operation with a high value for the threshold is first performed on

the image. This makes the bright objects stand out in the image. The centroid of these images is the

centroid of the LEDs, which is a measure of the camera's position. The second threshold is about a
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low value,whichcausesthedarkportionsstandout. The LEDs were easily recognized as long as no

bright objects appeared in the camera's field of view. The paint, however, did not make the target

easily identifiable. While the paint was always recognized as maximally dark by the imaging

system, other objects were perceived to be just as dark. Therefore, target identification was

compromised.

Along the same lines, it was conceived that a bright surface may be easily recognizable. 3M

High Intensity Sheeting was next tested. This is a material used for the speed limit signs found on

highways. It is a highly reflective material that provides its best reflectance when normal to the light

source (97% reflectance within 3 degrees to the normal). The sheeting was tested as a cross-hair in a

similar fashion to the black, painted cross-hair. The sheeting did not provide for as much contrast as

expected.

From this experimentation another idea was spawned: Use the High Intensity Sheeting as the

target and the black paint as the cross-hairs. When a light is shown on the target, the High Intensity

Sheeting reflects most of the light but the paint absorbs most of the light that is shown on it. By

thresholding out the bright part, the target's translational position is revealed by the cross-hairs. By

mounting a light on the camera and thresholding out the dark part of the image, the camera's position

in the image can be determined. The method proved to be good for recognition and tracking of the

target but poor for camera recognition. The light mounted on the camera is only distinguishable if

the camera's optical axis is very near perpendicular with the surface of the target.

While these procedures did not provide the ideal target, they did provide some good insight.

The only reason this last method failed was because the camera could not be identified. A previous

method failed because the target identification was poor.

Another device that is similar to the High Intensity Sheeting is a retrorefiector. In fact, the

High Intensity Sheeting is essentially many poor quality retroreflectors placed next to one another on

a sheet. Retroreflectors reflect light parallel to their incident angle and at a slight offset based on the

dimensions of the retro-reflector as shown in Figure 6.
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INCIDENT/

LIGHT//_1

REFLECTED

LIGHT

.I

MIRROR

INC_DI__TNT_.... REFLECTEDLIGHT

RETROREFLECTOR

Figure 6 - Description of Retro-reflectors in Two Dimensions

When a light source shines on the target, the light that strikes the mirror reflects away at an

angle equal to the incident angle. The light that strikes a retroreflector is reflected directly back to

the light source. This was tested with the camera and mount as shown in Figure 7.

CAMERA

LIGHT RAY .AFTER

STRIKING
RETROREFLECTOR

RETROREFLECTOR MIRROR

Figure 7 - Initial Camera and Target Set-up

A problem developed because of the precise directionality of the retroreflectors. The light

from the retroreflectors actually misses the image plane of the camera. It is reflected back to the

LED, not into or through the lens of the camera. For this reason the LED was wired over the center



of the lens at a slight offset as shown in Figure 8.

12

LED CAMERA LENS

LED WIRED
OVER THE LENS

FRAME OF CAMERA

Figure 8 - Diagram of Camera and LED

When the light source is very near the center of the lens of the camera, this light appears in the

retroreflectors in the camera's image. In Figure 9, the light source cannot be seen in the mirror but

can be seen in the retroreflector. The camera is at too oblique of an angle to see its own reflection or

that of the LED in the mirror.

CAMERA

LIGHT /

SOURCE

LIGHT RAY AFTER

STRIKING MIRROR

LIGHT RAY AFTER

STRIKING

RETROREFI.,ECTOR

RETROREFLECTOR

Figure 9 - Camera and Target Configuration

MIRROR
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Thelightthatstrikesthemirror will bereflectedawayattheincidentangle.Thelight thatstrikesthe

retroreflectorwill bereflecteddirectlybackintothecamera'slens.

It shouldalsobenotedthattheLED canbeusedto markthecamerain the image.Thesame

LEDusedto illuminatetheretroreflectorsisusedto locatethecenterof thecamera'slens. TheLED

image'soffsetfromthemonitorcenterrepresentsthepitch/yawalignmenterror.

Three retroreflectorsare necessaryfor determinationof lateral displacement,range and

orientationof thetarget,asshownin Figure10.

RETROREFLECTORS

MIRROR

Figure10- TargetwithRetro-reflectorsin the"Up"Position

If oneretroreflectoris placedat thecenterof thetargetthenthelateralpositionof thetargetcanbe

determinedby measuringits offset from the centerof the monitor, howevertherewill be no

indicationof roll or range. If two retroreflectorsareusedthentherangecomponentof thetarget's

position can also be computed. A calibration betweenthe perceiveddistancebetweenthe

retroreflectorsandtherangeis usedfor this and is discussed in greater detail in the next section.

Three retroreflectors in an isosceles triangle allow for roll alignment. To accomplish the roll

alignment the target is oriented so that the triangle "stands up".

Development of Software

The automation is dependent on communication between the camera, imaging system, and

manipulator. A communication diagram for the system is shown in Figure 11.
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ROBOT IMAGING _f_SYSTEM

CAMERA

Figure 11 - Communication Diagram for the Automation of TRAC

The computer is the master in this system. It commands the imaging system to perform duties

which include grabbing images, processing images, etc. The PC then interprets the information from

the imaging system. This information is the basis for the commands given to the robot.

The communication allows for the determination of alignment errors and the subsequent

nulling of these errors. The computer is connected in parallel with the imaging system to allow for

high speed data transfer. The camera's image acquisitions are controlled by the imaging system and

are stored in and processed by the imaging system. The PC then interprets the imaging systems data

to determine the six positional errors. Once the errors are identified, they are nulled by

implementing routines that command the manipulator to move in the positive or negative x, y, z,

roll, pitch or yaw directions.

The computer's control of the PUMA is accomplished by connecting the PC's serial output

through TTL level circuitry into the teach pendant of the robot. The TTL level circuitry provides a

means of interpreting the computer's output and sending the correct voltage levels to the teach

pendant. Once the data is interpreted, the connection to the teach pendant is used to close a relay,

which is what occurs when a button is pressed by a user. This signals the robot to perform the

desired action.

The communication simply provides the means by which the automation can take place. To

utilize it, software must be developed to:

.

2.

Use the vision system hardware to distinguish the target from its surroundings

Interpret the mirror's position with respect to the camera
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3. Controlthemanipulatorbasedon thealignmentinformation

Distinguishing Target from Surroundings

Upon the completion of hardware development for the sensor, a problem is evident upon

implementation. When the image analysis is performed, noise arises in the system in the form of

exogenous lighting. When a light or bright object enters the camera's field of view, the imaging

system has no way of distinguishing this from the LED on the camera or the illuminated retro-

reflectors. To eliminate background light in this system a series of subtractions is used, as

demonstrated in Figure 12.

IMAGE 1 - LED OFF

MANIPULATORI

CAMERA

EXOGENOUS

""'LIGHTING

IMAGE 2 - LED ON

RETRO-

REFLECTORS

[',°

RESULT OF SUBTRACTION

IMAGE 2 MINUS IMAGE 1

Figure 12 - Image Subtraction

The images shown are what the camera might see when zoomed in on a portion of the mirror. The

first image is taken with the LED off. This image shows the camera, manipulator and any other

objects behind the camera. The second image is taken with the LED on (the bright spot in the center

of the camera). This image will include everything in the first image plus the reflection of the LED

and the illuminated retro-reflectors. The "off" image is then subtracted from the "on" image.

Subtraction of images is the literal subtraction of the gray scale values of corresponding pixels of
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twoimages.Theresultingimagewill includeonly theobjectsthathavechangedor arenewsince

the"off" image.Thiswill leaveonly theLED andtheilluminatedretro-reflectorsin the subtracted

image.

After the noise is reduced,the task of distinguishingthe LED from the retroreflectorsis

simplified.Theapparentsizeof theblobthatresultsfrom thelight reflectedto thecamerafrom the

retro-reflectorsasdeterminedby theimagingsystemis a functionof theretroreflectorsizeandthe

positionof theLED on thecamera.If theretroreflectorsperfectlyreflectedall of theLED's light

parallelbackto theirsourcethentheretroreflectorsandtheLED wouldappearto bethe samesize.

Thiswouldbe thecaseif theLEDwereplacedpreciselyoverthecenterof the lens.Thiscannotbe

donebecausetheLEDpositionedoverthecenterof the lensdistortsthecamera'sview. Hence,the

LED mustbeplacedat a slightoffsetfrom thecenterof the lens. As theLED is positionedfarther

fromthecenterof lens,thereflectedlightto thecameradecreasesasshownin Figure13.

_ RETROREFL_TOR

ID

IRIS

LENS '_"n_"x::x::'c_:_:"":'_k::x:"_:"x'_

i

!

IMAGE PLANE

Figure 13 - Example of Iris Blocking the Light from the Retro-reflector

As the offset distances H and D are increased, the angle 15also increases. This causes part of

the reflection from the retroreflector to miss the lens. In the worst case, it may miss the lens

altogether and be out of the camera's field of view even though the entire mirror is in the camera's

field of view. Another factor is that the LED actually blocks some of the returned reflection onto the

lens. As a consequence of these factors, the LED's reflection is always larger than the illuminated

retro-reflectors. Thus the centroid of the largest blob that the vision system recognizes is the LED



whichrepresentsthecentroidof thelens. Thenext threelargestblobsaretheretro-reflectors.

additionalblobsareconsiderednoisein thesystemandareignored.
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Interpreting Mirror Position with Respect to Camera

When the camera's reflection is not visible in its own field of view little can be determined

about the relative positions of the camera and target. However, if the target can be identified some

information can be retrieved. (By target identification, it is meant that the retroreflector pattern can

be identified by the imaging system.) If this is so, when the camera is rotated (pitch or yaw motion)

about the mirror then the perceived image of the retroreflectors changes. In fact, it changes in a

predictable manner. The perceived dimensions of the retroreflector pattern will be at a maximum

when the camera's optical axis is perpendicular to the target's surface. The perceived dimensions

will be at a minimum as the angle between the optical axis and the target approaches 90 degrees.

This simple fact is used to implement the gross positioning or FIND algorithm that will be discussed

in detail later.

When the camera's image is visible in the monitor, then the techniques of TRAC can be

utilized. This provides for the prediction of the necessary motions in the y, z, pitch and yaw

directions to make the camera perpendicular to the target. The concept requires that the LED and the

centroid of the retroreflectors be positioned in the center of the video image for perpendicular

alignment. Any deviation from this is considered an error in the direction of deviation. As produced

by the imaging system these errors are measured in pixels. A method must be developed to convert

this information into real spatial dimensions to make the information more useful for a control

algorithm.

The method for conversion of the lateral errors is based on a conversion between pixels and

actual spatial dimensions. It can be visualized with the aid of Figure 14.
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MIRROR

PROCESSED

IMAGE

Figure 14 - Geometry of the Lateral Error Conversions

The method is really quite straight forward. ERR m is the real spatial lateral alignment error

measured in millimeters. The perceived lateral alignment error measured in pixels is referred to as

ERRp. ERR m is the product of ERRp and a conversion between the two. The most likely

candidate for this conversion is the size of the pattern on the target. The perimeter of the isosceles

triangle is of known dimensions and the perimeter of the triangle in the image is determined by the

software. The ratio of these two values provides the required conversion factor.

( PER mERRm ERRp

where PER m and PERp are the perimeter of the triangle in millimeters and pixels, respectively.

The key to the pitch and yaw conversion is the sensing technique developed for the range. The

range is determined by use of a calibration for the size of the triangle formed by the retroreflectors.

It is determined by an empirically derived curve fit for the relation between perceived perimeter size

of the triangle pattern of retroreflectors and the real distance from the camera's lens to the target.

The relation between the distance to the target and the perceived perimeter size is an offset

hyperbola. This can be explained intuitively and by observations about the optics of lenses. At large

distances, the size of the pattern does not appear to change very much with distance. At small

distances, the change in pattern size is tremendous. In fact, before the camera lens touches the
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mirror (range = 0), the entire pattern will no longer be in the camera's view; it will appear too large.

This relation quickly brings to mind an inverse relationship between the variables and will be

demonstrated with the help of the lens in Figure 15.

T ° m

PIXEL

DISTANCE

3__

.J°_SE_L
" ° "1" "1" _,NOE---_

\

IMAGE PLANE

/

\ /
.... J -

RETRO-REFLECTOR

COMPOUND LENS

CENTER OF LENS

Figure 15 - Description of Range Equation

true.

The angles ct and 15are equal. Therefore because of similar triangles the following equality is

PIXEL DIST. REAL DI ST.

D OFFSET + RANGE (2)

The offset is necessary because the range can only be measured from a known position- the

front of the lens. The offset is the distance from the front of the lens to the center of the lens which

is unknown. Solving equation 2 for the range produces the following.

REAL DISTANCE x D
RANGE-- + OFFSET

PIXEL DI STANCE (3)

where REAL DISTANCE, D and PIXEL DISTANCE are all constants. Therefore the following

relation for the range can be used to produce a curve fit of the data where A and B are coefficients

to be determined.
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A
RANGE= _ + B

PEap (4)

Software was developed to enable simple data acquisition at several distances to obtain data to

determine A and B. These data are shown in Table 1.

Table 1 - Data for Determining Coefficients of Range Equation

PERIMETER

(pixels)

190,0
212.0
234.0
256.0
280.0
308.0
312.0
345.5

390.0
447.0
526.0
639.0

RANGE

(mm)

769.5

688.0
620.0
570.0
520,0
472.5
468.0
419,3
369.5
320.0

268.;5
218.0

This was fit to an offset hyperbola and is shown with the actual data in Figure 16 with A=149,349.

and B = -14.55.
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Figure 16 - Verification of Range Data Linear Regression
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The range calculated with the values of A and B corresponds nicely with the range as

measured. This range information is used to calculate the pitch and yaw positions of the target with

respect to the camera. Figure 17 shows the geometry involved.

RANGE

MIRROR

CAMERA

PROCESSED
IMAGE

Figure 17 - Geometry for Real Pitch and Yaw Positions

In the figure, O is the real spatial rotational position of the camera (pitch or yaw) with respect

to the target. ERR m is the distance from the point where the imaginary perpendicular line between

the mirror and the LED strikes the mirror (the optical axis) and the center of the mirror, measured in

millimeters. ERRp is the measure, in pixels, of the distance from the LED to the center of the

monitor in the acquired image.

From the figure the following equality can be derived in much the same manner as the lateral

alignment error is determined.

ERR m = ERRp ( PERm ) (5)

The angle O is then determined by the equality,
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0 = sin-l( RANGE?ERR"]
(6)

The remaining alignment _ror to be determined is the roll error. The methodology to determine the

roll position is only dependent on the retroreflectors position. Initially the second area momem of

inertia of the image was used to calculate roll. For the triangle configuration this provides a unique

value for each roll position but this proved to be computationally expensive.

A better scheme determines the roll error by first locating the centroid of the retroreflectors.

The position of the top of the triangle is then determined. This is accomplished by determining the

distance between each retro-reflector. The two that are closest together are the base of the triangle.

The other one is the one to be aligned on top. Once the position of the centroid and the top retro-

reflector are determined the roll position can be calculated as shown in Figure 18.

- Zaxis

i

POSITION OF TOP

RETROREFLECTOR

ry axis

CENTROID OF

RETROREFLF_TORS

Figure 18 - Method for Determining Roll Error

The roll position is

where

ERRy = TOP RETRO' S Y POSITI(_ - CENTROID rS Y POSITION

ERR z = CENTROID SZ POSITION - TOP RETRO' S Z POSITION

(7)
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The relation for ERR z may seem odd at first but remember that the angle q_ is from the negative z

axis.

Control of the Manipulator

The next task is the development of a method to control the manipulator. A consideration in

this development is a limitation of the interface with the PUMA; because the PUMA is designed to

be "taught", only one axis can be commanded constant speed motion at any given time. In addition,

when the subtraction algorithm is implemented, the camera must not be in motion. This is an

inherent limitation of the subtraction algorithm and the speed of the image acquisition. The time

between image acquisitions is approximately 33 milliseconds and this is enough time for the robot to

move significantly between acquisitions. This results in two images that are not of identical scenes

and therefore noise is introduced into the system.

Acknowledging these limitations, the simplest control is a pulse width modulated feedback

scheme as outlined in Figure 19.

DESIRED._+(
POSITIONS " "_ERRORSX C ON T ROL-_ MOTION ff 1 MOTIOI__ I TIME I ACTUALDELAY POSITIONS

PERCEIVED

POSITIONS

IANIMAGE _

ALYSI_

Figure 19 - Basic Closed Loop System

This basic outline shows how the system must logically progress. Six desired positions are

compared with six perceived positions. These errors are passed to the control algorithm which

decides which robot axes will be commanded to move.

manipulator which in turn causes the motion to occur.

motion to stop and the process starts again.

This information is then passed on to the

The controller then sends a signal for the
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Thetimefor eachmotionto occuris asimplematterto determine. It is the real spatial error in

millimeter or degrees divided by the speed of the motion axis in millimeters per second or degrees

per second.

Frror in Real Spatial Dimensions

Delay = Speed of Robot Motion (8)

For example, if a pitch error is sensed to be 5 degrees and the robot's pitch speed is 1 degree

per second, then the robot will be commanded to perform a pitch motion for 5 seconds.

Algorithms

The algorithms used to fill the "control logic" block of Figure 19 must now be developed. As

previously mentioned, the automation of TRAC is broken into two parts, gross positioning and fine

positioning. The gross positioning algorithm is broken into three sub-sections. Initial target

recognition, initial approach to target, and the "finding" of the camera's reflection. The initial target

recognition is used to make sure the system can sense the minor in its current pose. The initial

approach to target is used to position the camera at a consistent starting position for the

implementation of the FIND algorithm which drives the camera to approximate normal with the

target. The fine positioning algorithm can be thought of as one procedure. These procedures are

implemented as choices on a menu which will be described in greater detail later in this report.

Before these procedures can be developed, the image processing procedures must be discussed.

The subtraction algorithm described previously is implemented as the flow diagram of Figure

20.

TURN LEDON OFF 3 L, Two ,) L VO-O  off

Figure 20 - Flow of Subtraction Algorithm

The LED over the lens of the camera is fu'st turned on. While the manipulator and camera are

steady, an image is then grabbed by the imaging system. The LED is then turned off. A second

image is grabbed by the imaging system. The "off" image is then subtracted from the "on" image.
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Thisresultsin an imagewithminimalnoise.

To get therequiredinformationfor thecontrol, this imagemustbeanalyzedusingthe blob

analysissoftware.This isreferredto as"GetBlobs"in thesoftware.TheGetBlobsroutineusesthe

subtractionalgorithmto produceanimagethattheblobanalysissoftwarecanmoreeasilyinterpret.

Theblobanalysissoftwareprocessestheimageandproducesanarrayof structures.Eachelementof

thestructurerepresentsablob. Therelevantattributesof thestructurearethelocationof thecentroid

of eachblobanditsarea.A sortingof theblobs,from largestto smallest,distinguishesbetweenthe

LED(thelargest)andtheretroreflectors.Thisusesa"bubble"sorttorearrangetheorderof thearray

of structuressothat the largestblob'sstructureis in the fit-stelementof the arrayof structures.

Figure21diagramsthisprocess.

SUBTRACTION'_CLEAN( BLOB _ SORTAL_O_ ) _GE-t,ANALYSIS BLOBS

Figure 21 - Flow of Get Blobs

BLOBS SORTED,..

AND COUNTED

The initial target recognition algorithm is outlined as follows in Figure 22.

START 1

COET!  s @ No
I PRINT "UNABLE TO 1

LOCATE TARGET.

REPOSITION CAMERA
AND TRY AGAIN"

_ DRAWL_E
ETWEEN RETRO_

¢

TO MONITOR'S I
CENTER ,)

I PRINT "TARGET AND
CAMERA ACQUIRED.

CAN YOU VERIFY?"

NO ...( DRAWLINE "_

-t,_w_ _RO_
1

IA PRINT "TARGET 1CQUIRED. CAN YOU
VERIFY?"

Figure 22 - Algorithm to Implement Initial Target Recognition
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Theinitial target recognitionimplementsthe Get Blobsalgorithmandthenchecksfor the

numberof blobs. If therearelessthanthreeblobstheneithertherelativeanglebetweenthe camera

andthemirror is too largeor theretro-reflectorsareoutof thecamera'sfield of view. Theprogram

thenaskstheuserto repositionthe camera.If threeblobsarefounda line is drawnon themonitor

betweenthe blobsandtheuseris askedto verify thatthetargethasbeenfoundbeforeproceeding.

Thisshouldbe theperimeterof theretroreflectors.If morethanthreeblobsarefound,the system

assumesthattheLED isvisible. A line isdrawnfrom thelargestblob to themonitor'scenteranda

line is drawnbetweeneachof the retroreflectors. The user is then asked to verify that the target and

the camera have been identified.

Initial target recognition requires that the user can see a live image and see a representation of

the imaging system's perception of the target position as marked by the retroreflectors. This is

implemented by using two video monitors - one with the imaging system's output and another with

the live camera output (Figure 23).

IMAGE OF
IOO

MIRROR

VIDEO MONITOR

WITH PROCESSED

IMAGE

VIDEO MONITOR

WITH LIVE IMAGE

Figure 23 - Possible Scenario for Verification of Target Identification

Once the target has been identified, the user can be confident that the system will perform

properly. The next step is to try to position the camera at a specific distance from the target to allow

the FIND algorithm to attain an approximate normal more easily. This is referred to as "Initial

Target Approach" and is outlined as follows.
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START

GET

C_D°VE

UCE ERROR

<3 3 BLOBS?

I PRINT "UNABLE TO 1

LOCATE TARGET.

REPOSITION CAMERA
AND TRY AGAIN"

NO

YES

NO
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¢

TO MONITOR'S]
CENTER )

CAMERA ACQUIRED. |

AN YOU VERIFY7 (Y/N)_J

,._(- DRAW LINE

RRORS AND RANGE)

YES

NO

Figure 24 - Flow of Initial Target Approach

This algorithm first employs the Get Blobs algorithm. The next step depends on whether the Get

Blobs routine provided less than three blobs, three blobs, or more than three blobs.

If less than three blobs are sensed, there has either been an error in the blob analysis or the

retroreflectors are not visible to imaging system. In this case the user is told to reposition the camera

and try again.

If more than three blobs are found, then the LED is visible in the reflection or some form of

noise has entered the system. In this case, the system asks for help. If the user agrees that the LED

is visible then the range error is minimized. This is accomplished by first determining the range

error. If it is within the desired tolerance the initial approach to target is done. Otherwise the error is
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used to determine the time delay for the range motion. If the user does not agree that the LED is

visible then the system asks the user to reposition the camera and try again or another picture is

needed without noise.

If three blobs are found, the retroreflectors are centered in the camera's field of view and then

the camera is positioned at a specific range. This is accomplished by determining if the lateral error

is greater than a set tolerance, usually 10 pixels. If the error is greater than the tolerance then the

greatest error is reduced by a motion of the robot. This procedure is repeated until both lateral errors

are within the tolerance. The range error is then concentrated on. It is nulled in the same manner as

lateral errors.

The find algorithm is then implemented to put the camera into position to sense its own image

in the mirror. Some sub-algorithms must be first explained that facilitate the description of the find

algorithm. The first of these has already been used within other routines. It will be referred to as

"Check for Retros and LED" and is shown in Figure 25.

[" PRINT "UNABLE TO
| LOCATE TARGET. [___

/ /REPOSrrIoNCA RA V-
_ AND TRY AGAIN J

YES DRAW LINE DRAW LINE FROM, PRINT TARGET AND
BEI'WEEN LED TO MONITOR S CAMERA ACQUIRED

RE'rROS 9 "CENTER AN YOU VERIFY. (Y/N

Figure 25 - Flow Chart of "Check for Retros and LED"

The execution of the algorithm will only be noticed if more than three blobs are found in the

image by the imaging system. If this condition is true, lines are drawn connecting what the imaging

system perceives to be the retroreflectors and another line connecting the center of the image and the

LED. The user is then asked whether this is indeed the case. If the imaging system is correct it

returns control back to the user with a message signifying the find algorithm is completed. If an
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errorhasoccurred,theuseris promptedto re-alignthecameraandtry thealgorithmagain.

A secondnecessarysub-algorithmwill bereferredto as"DO ROTATION". Its flow is shown

inFigure26.

( r CI-IECK FOR
------_, GET BLOBS j LRETROS & LED,,] k

POSITIVE GET BLOBS .,) - _.,RETROS & LED) - _,ROTATION

I NEGATIVE
ROTATION GET BLOBS

TWICE

CHEC K FOR
osat ) k.

Figure 26 - Flow Chart of DO ROTATION

 os_- )PERIMErER

PERIMEFER

This routine calculates a reference perimeter size (ZERO), a perimeter size after a positive

rotation (POS) and after a negative rotation (NEG). The variable, ROTATION, must be set to either

PITCH or YAW before calling it. The perimeter is calculated using the blob's positions. Consider

the blobs to be points in a plane, POINT 1, POINT 2, and POINT 3, having positions Y;, Z I, Y2,

Z2, Y3, and Z 3, as shown in Figure 27.

r
Zaxis

Point 1

Point 2

Point 3

Figure 27 - Perimeter Calculation

The perimeter is then the sum of the lengths of the lines connecting the points as in equation 9
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PER, d<Vi- )
i=1,2,3;j=2,3, 1

(9)

These sub-algorithms make it possible to implement the "FIND" algorithm as shown in Figure 28.

="P_CH"

DO :- ZERO > ZERO

'ROTATION' ZERO > ZERO > POS?

YES

ONCE

ROTATION =

YES

ONCE

Figure 28 - Flow Chart of Find Algorithm

The algorithm is based on the optical property that the perimeter will be largest when the

camera's optical axis is perpendicular to the target. The explanation of this can be facilitated by

visualizing a triangle in three-dimensional space. If its plane is perpendicular to the line of sight it

will have its maximum apparent size. As it is rotated away from perpendicular its apparent size

decreases.

The algorithm is accomplished by performing a positive and a negative pitch motion. The

apparent size of the retroreflector triangle perimeter is recorded before and after each motion. The

robot is then commanded to move in the direction which causes an increasing perimeter size. This

procedure is repeated for the yaw motion. The yaw and pitch motions are alternately implemented

thus causing the alignment to be optimized. This is continued until a fourth blob is seen by the
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camera.Theuserverifiesthatthefourthblob is theLEDandthenthefinepositioningalgorithmcan

takeover.

Thefinepositioningalgorithmallowsfor precisionalignmentof theendeffector. A diagram

of theflow of the program is shown in Fig. 29.

_ _ /.______ NO (DETERMINE'_ _ ( DECIDE"_ _ (CALCULATi_ ( DO

IGETBLOBS_- " -" ""'"_"_ _'" ERRORS J'-_MOTION_'_DE_Y-_. MOTION

T 1
Figure 29 - Flow Chart of the Fine Positioning Algorithm

This routine fast implements Get Blobs and checks to make sure that exactly four blobs were

sensed. If not, the user is told that the target and camera cannot be acquired and asked if Get Blobs

is to be repeated. Once a good image has been acquired the six errors are determined. A routine

then uses these errors to determine which motion the robot should take. The pitch or yaw errors are

minimized first, based on which is largest. The lateral errors are then minimized, followed by the

range and finally the roll.

After the motion has been decided, the time delay for the motion is calculated and finally the

motion is performed. The algorithm is designed to stop when the errors are all within a specific dead

band. The dead band is dependent on the minimum possible motion of the robot in each direction,

the resolution of the image and several other constraints that will be discussed in greater detail later.

The Complete System

Now that all the components of the system are developed, the system operation can be

described. The automation is implemented by a user-driven menu where the user guides the

progression of the automation. Each algorithm is available for user-implementation by pressing the

key on the PC keyboard corresponding to the option of interest. All of the options listed are

previously described except the manual control. This employs the interface between the PC and the

teach pendant to allow the PC to simulate the teach pendant. The keyboard replaces the teach

pendant so the user can manually control the robot by pressing various keys to activate the various
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motionaxes.

Performance of the Automation

The following section examines the expected performance of the automated TRAC system in

terms of accuracy, resolution and repeatability.

Uncertainty_ Analysis

The dead bands of the controller show the performance of the system. An uncertainty analysis

is necessary to obtain a real understanding of the accuracy of the numbers. Accuracy is defined as

how close to exact alignment the system is capable of. It is therefore desirable to determine the end-

effector's error with respect to the absolute position. The composite error is made up of the six

directional errors. The errors of interest are the deviation of x, y, z, roll, pitch and yaw, as

previously defined, from their positions as reported by the computer algorithm.

The uncertainty of a system, tos, is a measure of the probable maximum deviation from a

reported value. It is defined as the square root of the sum of the products of the change in the

dependent variable with respect to each independent variable and the uncertainty of the independent

variables toi [7].

(OD _2 (c3D _2 11/2+ + '

where I i and D are the independent and dependent variables, respectively.

Before the six errors of interest are determined some preliminary uncertainties must be derived.

The first is the uncertainty of the centroid of the retroreflectors in pixels. The equation for the

centroid in each of the y and z directions is identical. For the y direction the centroid equation is as

follows.

( Yi + Y2 + Y3 )

CENTy _- 3

where YI, Y2, and )'3 are the three retro-reflector positions in the y direction.

(11)

In equation 11, the
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y/are the independent variables and CENTy is the dependent variable. With the partial derivatives

of equation 11 in equation 10 and assuming the uncertainty of each centroid, tOy/, is 0.5 pixels, the

centroid uncertainty tOCENTy becomes 0.289 pixels.

The uncertainty of the perimeter measurement in millimeters is next determined. The positions

of the retro-reflectors on the mirror are described in Figure 30.

RETRO-REFLECTOR

Y2, Z2

1
h = 40ram

A_O, z
Yl, z 1(_ z3b = 25mm

Figure 30 - Retro-reflector positions about the center of the mirror

The perimeter defined by the retro-reflector triangle can be shown to be

+b
(12)

Thus PERm= 108.8 ram. With the derivatives of equation 12 in equation 10 where h and b are the

independent variables and PER m is the dependent variable, and with tOh = tOt, = 0.5 mm

tOr,_ = 1.33 mm

This is the uncertainty in the perimeter in millimeters.

This calculation can then be built upon to

measurement in pixels.

(13)

produce the uncertainty of the perimeter

The uncertainty of the perimeter in pixels from equation 10 is:
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[ ( 0PERp 2 0PERp t0z2)2+ ( aPERp 2

1

+ _ tO + toY3k _1 toYl + I, dy 2 Y2 dy 3 (14)

toyi = tozi = 0.5 pixels and the partial derivatives are found from equation 9.

To enable this uncertainty to be calculated, numerical values are needed for the retroreflector

positions because this particular uncertainty is a function of range. Since the aligned position is the

position of interest for this application, it will be used for the calculation. (By aligned position, it is

meant that the centroid of the retroreflector pattern is centered in the monitor image.) The location of

the retro-reflectors is also dependent on the range. If a range of 350 millimeters is used then the

perceived perimeter PER t, is 409.67 pixels and the aligned position is

y_ = -47.35 pixels; z I ---50.50 pixels;

Y2 -- 0.00pixels; z2 -- -101.01 pixels;

Y3 -- 47.35 pixels; z3 = 50.50 pixels. (15)

With this data in equation 14, the perimeter uncertainty becomes

tot,E% = 1.4864 pixels (16)

Range Uncertainty_

The x or range calculation can be analyzed by using equation 4 in equation 10.

uncertainty is then

The range

(.ORANGE=[ ( ORANGE 2 ORANGE 2

where A and B where previously presented, to,4 = 578., and toe = 2.49.

becomes

0MANOE = 3.030 mm.

1

OB COB)
(17)

Numerically, equation 17

(18)
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Lateral Position Uncertainty_

The lateral position (y and z) uncertainty is derived using equation 1 in equation 10.

uncertainty is then

The

1

o_,m=r (m _, tgERRm 2 cqERRm 2 c3ERRm 2

where

0ERR m PER m 0ERR m ERR v c3ERR m PER m

0ERRp = PER v , c3PER m = PERp , c3PERp ERRp PER_

(19)

With toERRp = 0.5 pixels and ERRp = 0 due to the aligned position,

to_ = 0.1328 mm (20)

R0_tional Uncertainty (Pitch/Yaw)

Equation 6 is used to derive the uncertainty calculation for the pitch and yaw positions.

resultant uncertainty equation is

1

{_ERRmtoERRm) +( ORANGE {'ORANGE) 2

where

The

(21)

O0 -1 O0 -ERRm

0ERR m 4 RANGEa _ ERR2m and ORANGE RANGE_'RANGEa_ ERR2

With ERRm= 0, RANGE = 350 ram, and equation 20, the uncertainty of the pitch or yaw position is

too = 3.79 • 10 -4 rads. = 0.022 degs. (22)
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Roll Uncertainty

Finally the uncertainty of the roll calculation is derived from equation 7. The uncertainty is then

0t_ 2  21"2
(23)

where

= ERR and = -ERR 
0ERRy ERREy + ERR:z 0ERRz ERR_ + ERR2z

At alignment for a range of 350 mm, tOERRy = .577 mm, ERRy = O, and ERR z = 101 mm the

uncertainty is

t0_ = 5.71 • 10 -3 rad. = 0.33 deg. (24)

Implementation of the Automation

Several unforeseen problems have plagued the automation and for the most part they have been

hardware problems. For example, the PUMA manipulator that was initially designated to be used in

this development had a failure related to its controller. Therefore the development was relocated to

another PUMA 560 manipulator. In addition, the imaging system does not perform as well as was

hoped. While its features are very useful they are not very consistent. Even when the camera is

motionless two consecutively acquired images are not always identical and this causes automation

problems. The root of the problem seems to be the synchronization between the camera and the

imaging system. The manufacturer cannot duplicate the conditions at their facility due to the

complexity of the configuration. Therefore minimal technical help is available. The problem has

not been solved but its effects have been lessened by means of an software error trapping routine that

ignores bad images or restarts the image acquisition sequence any time errors are received from the

image acquisition or the blob analysis routines.

Once the initial problems were overcome, the limits of the system were determined

experimentally. The bounds of the controller's dead band for the six errors def'me the accuracy of the

automation. The uses of the system "squeezed" the limits of the dead bands of the controller for

each direction. These limits have evolved over the course of the development of the automation and

are due to the smallest increment that the PUMA can move or rotate under relay control. The six
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Table2 - DeadBandsfor theAutomationof TRAC

MOTION AXIS DEAD BAND

LATERAL 0.25 mm

PITCH/YAW 0.05 deg

RANGE 0.10 mm

ROLL 0.10 deg

If the uncertainties for the aligned position and uncertainties using the dead bands of Table 2

are compared there is virtually no difference. The accuracy of the six positions are summarized in

the following table.

Table 3 - The Accuracy of the Automation

MOTION AXIS ACCURACY

LATERAL 0.25 + 0.13 mm

PITCH/YAW 0.05:1:0.022 deg

RANGE 0.10 + 3.15 mm

ROLL 0.10 + 0.49 deg
I

The values of Table 3 are dependent on the minimum motion of the robot in each direction, the

resolution of the imaging system and the angle of view of the lens.

The optimization of the controller is limited by the minimum motion of the robot. If the

minimum motion of the robot is infinitesimally small then the least possible steady state error in also

infinitesimally small. Conversely, if the minimum motion of the robot is large then the steady state

error will be large also.

The resolution of the imaging system plays an important role also. For example, in the range

calculation of equation 4, the perimeter size is the independent variable. If the resolution of the

imaging system is increased ( more pixels to represent same image ), then the perimeter as measured

by the imaging system is more precise. This should produce a better estimate of the values of A and
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B. Therefore the range uncertainty of equation 18 will be smaller due to the decrease in the values

of m,4 and ton. The same effect is present in all six position calculations. The increasing accuracy

of the pixel position translates into increasing positional accuracy. Also affecting accuracy is

altering the angle of view of the lens which effectively alters the resolution of the image. If the

resolution of the imaging system is held constant and the angle of view increased, then the resolution

of the image is effectively decreased. The converse is also true.

In the matter of gross positioning, the critical step is the initial position of the camera with

respect to the minor at "target recognition." The reliability of the user to recognize that all three

retro-reflectors are in the camera's view is essential. An additional consideration must be introduced.

The nature of the FIND algorithm is such that there are certain positions where the user-verification

may be successful but the routine has a poor chance of being successful. The main consideration is

the capture angle of the retro-reflector. The retro-reflectors in use in this implementation (0.282 inch

diameter, Technical Spec Comer Cube Reflectors from Edmund Scientific) have a capture angle of

approximately sixty degrees or thirty degrees from the normal to the reflecting surface.

Consequently, if the camera is aligned at approximately thirty degrees with respect to the mirror then

the retro-reflectors will be visible. However, the FIND algorithm may have trouble performing its

task. Figure 31 shows a possible scenario.

MIRROR

PROCESSED

IMAGE

Figure 31 - Possible Problem with the FIND Algorithm
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Theimageof theretro-reflectorscanbeseenattheinitial position. If 0 is initially near thirty

degrees, an ensuing motion causing the angle to increase will probably cause the retro-reflectors to

lose their illumination and subsequently cause the routine to fail.

Considerations And Limitations

During the design and development of this automation several limitations of the system have

become evident and must be mentioned. The description of each follows.

First of all, the subtraction routine is not 100% effective in eliminating exogenous noise. If the

system experiences light bright enough to flood the lens then the subtraction algorithm is useless.

This became evident in the testing of the automation. The lighting above the robot consists of banks

of four fluorescent tubes. When the camera is in a position so that the tubes are directly behind the

camera then these lights shine into the mirror and are reflected back to the camera. Subsequently,

the lens is flooded with light. Therefore the system is inoperable if very bright lights can be

encountered. It should also be noted that the definition of very bright is a function of each lens and

how far the aperture can be closed. This possible problem can be mitigated however because

hardware can be developed to shield the mirror from light emanating directly behind the camera.

A crude device was used to perform the shielding when background light interfered with the

automation. The device was simply a small piece of cardboard approximately one foot square,

mounted behind the lens but on the camera frame. This provided adequate shielding to any

interference caused by objects behind the camera. If bright background lighting is a legitimate

concern a more durable shield could be easily fashioned.

Another concern is the use of this system for long distance applications. This could be

facilitated by more intense illumination of the target by the camera's light source. The current LED

illuminates the retro-reflectors only if they are within approximately ten feet of the camera.

Problems arise when altering the light source. If the light source is placed laterally too far from

the camera lens, the light from the retro-reflector can miss or be blocked from the camera lens by the

iris or aperture and cannot be seen on the image plane of the camera as mentioned previously and

illustrated in Figure 13. Therefore, the light source must be placed within a critical distance of the
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lensto insurethattheproperimageof the retro-reflector is attained. An alternative to the LED is

composed of a compound lens with a beam splitter and a beam spreader in the middle. Figure 32

shows what this might look like.

Beam

Splitter/Spreader

Lens _ Lens ....:.'-::::_

Figure 32 - Compound Lens with Beam Splitter/Spreader

The lens mechanism is essentially one lens split down the middle. Between the two lenses are

a beam splitter and a beam spreader. It is also possible that the outer lens may work sufficiently as a

beam spreader. This is analogous to putting a light source in the center of a single lens. This is a

more complicated scenario and will be difficult to implement. The benefit of this system is that light

reflected from the light source at any angle I_ within the capture angle of the retro-reflector will

appear on the image plane (see Figure 13).

Another alternative for long distance applications may be to use a bank of very bright LEDs

around the perimeter of the lens and some less directional retro-reflective material on the mirror.

Because of the larger distances involved and the relaxed directionality of the retro-reflectors, the

light from the brighter LEDs should return as a cone and enter the lens of the camera.

Another limitation of the automation is related to the FIND algorithm and the angle of view of

the lens. If the angle of view of the lens is increased then the PERp calculation of equation 10 will

be less accurate. The FIND algorithm is dependent on a consistent measure of this perimeter to

perform as desired. For the distances and the lens tested this was not a problem but it is a potential

problem upon other implementations.
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As referred to previously, when the FIND algorithm is operating at the edge of the retro-

reflector capture angle it has a better chance of failing. This could be alleviated by writing some

smarter algorithms to take care of the case when one or several retro-reflectors suddenly disappear

after a motion. This should signify to the controller that the previous motion was away from

alignment so a motion in the opposite direction is necessary to attain alignment.
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